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I. INTRODUCTION

Electromyography (EMG) is a bio-medical signal that is
produced by the muscular electrical activity in response to
stimuli [1]. A muscle is a set of motor units each composed out
of muscular cells innervated by a motor neuron. Muscles are
connected to tendons which serve to move skeleton structures.
A resting potential between the intracellular and extracellular
environments of the muscle is about -80mV. Motor neu-
ron initiates muscle contraction by releasing specific neuro-
transmitters from the corresponding nerve endings. Increased
neurotransmitter concentration is picked up by the muscle
cell receptors which in turn initiate a process of membrane
depolarization. A wave of polarization and depolarization is
propagated across the neighboring muscle fibers causing them
to contract [1] [2].

The summation of the action potentials from all fibers in a
particular motor unit generates a motor unit action potential
(MUAP). Thus, the EMG signal can be observed as a result
of the summation of multiple MUAPs [3]. Generally, there are
two types of sensors used for EMG signal acquisition: invasive
and non-invasive. Invasive sensors are inserted directly into the
muscle tissue while non-invasive are placed on the skin above
the region of interest [1]. For the purpose of this study non-
invasive sensor from the MYO Armband will be used.

MYO armband is a human-computer interface developed
by Thalmic labs in 2014. The armband is placed at the upper
part of the forearm where it acquires EMG activity through 8
sensory modules. The device communicates with the computer
by using Bluetooth. MYO armband supports five hand gestures
from the box: wave in, wave out, fist and spread fingers. Those
gestures can be then mapped to predefined user commands
or application. Additionally, real-time raw EMG data can be
acquired via the MYO Armband SDK.

In this paper, we will propose a gesture-based framework
which would allow real-time usage of the MYO Armband
in different gaming scenarios. In the further section, we
will provide performance measurements of the framework in

Fig. 1. MYO Armband and labeled channels

Fig. 2. Raw EMG signal sample

relation to the classification model, train-test split ratio and
filtering window size.



Fig. 3. Rectified EMG signal sample

Fig. 4. Filtered EMG signal sample

II. MATERIALS AND METHODS

A. Materials

In this study we used non-invasive commercial EMG sensor
Myo Armband. Small size, portability and relatively low cost,
and a proprietary SDK make MYO Armband a great device
for quick EMG data acquisition. MYO Armband has 8 dry
sensors (Figure 1). Those 8 sensor transfer EMG data through
Bluetooth at a rate of 200Hz. The armband should be placed
at the upper part of the forearm. Before every experimental
trial, MYO had been worn for a period ranging from 5 to 10
minutes for device warm-up and more accurate sensory output.
Once the device is connected to the PC, the raw EMG data
was acquired by using the official Thalmic Lab SDK.

B. Methods

1) Data acquisition: The raw EMG data from the MYO
Armband is collected through the window WN×8. The win-
dow size is adjustable based on the gaming application used.
If the window size is 200 samples (|W | = 200). Each column
of the W is represented by the channel vector C200×1

i received
from the channel i = 1, 2, 3, ...8.

2) Rectification: Preprocessing is a crucial part of EMG
signal classification. Raw EMG signal (Figure 2) should

be preprocess to eliminate random high-frequency and low-
frequency noise [1]. This is usually done by averaging the
signal Sn and performing full-wave rectification. The result
of the signal rectification is a signal abs(Sn) (Figure 3)
where each data point is an absolute value of itself. Full-wave
rectification preserves the original EMG dynamic and helps to
avoid the situation when the EMG signal can be averaged to
zero.

3) Filtering: For real-time EMG filtering the moving aver-
age algorithm is used. Each channel Cn of the signal Sn is
filtered by unweighted mean of the previous n data points pi.

Cn =
pM + pM−1 + pM−2 + ...+ pM−(n−1))

n

Cn =
1

n

n−1∑
i=0

pM−i

For offline performance estimation of the classifier models
the moving average approach is inadequate since it makes data
points dependent of each other. Therefore, to avoid the possible
dependency between the train and test sets each channel Cn of
the signal Sn is averaged by the number of points Np (Figure
4).

4) PCA: Principle Component Analysis (PCA) is a very
powerful yet simple dimensionality reduction technique. The
main idea behind PCA is to project data from a high-dimension
space onto low-dimension space with maximum variance. The
approach is particularly useful for preliminary analysis of the
complex multichannel EMG datasets. The result of the PCA
is a set of orthogonal principal components among each the
variance of the features is maximized and noise is reduced [4].

The PCA uses the notion of variance and covariance exten-
sively. The variance is measure of the data is spread from the
mean in a dataset:

V ar(X) =

∑n
i=0 (Xi −X)

2

n− 1

Covariance is a measure of how the data dimension vary
from the mean with respect to each other. For matrices X and
Y the covariance is calculated as follows:

Cov(X,Y ) =

∑n
i=0 (Xi −X)(Yi − Y )

n− 1

Although the covariance must be calculated only between
two dimensions, it is still possible to get the covariance
estimates from a multidimensional dataset. It is done by cal-
culating all possible inter-dimensional covariances and putting
them into covariance matrix CN×N where N is the total
number of dimensions.

CN×N = (ci,j = Cov(Dimi, Dimj))

Before calculating the covariance matrix for the dataset, it is
important to subtract mean value x from x in all dimensions.
The new dataset, therefore, will have a mean of zero.

Next step is find eigenvalues and eigenvectors of the covari-
ance matrix cov. The biggest eigenvalue with a corresponding



Fig. 5. Four gesture dataset projected on two principle components

Fig. 6. Four gesture dataset projected on three principle components

eigenvector will be a principle component of the dataset. It is
up to us to decide how many principle components to choose
from a ComponentV ector.

ComponentV ector = [eig1, eig2, eig3, ...]

The final step is to project the dataset along the chosen
principal components. This is done via simple matrix multi-
plication where both the principle components matrix Pc and
feature matrix X are both transposed.

ProjectedData = PT
c XT

The PCA results on the dataset with 4 prerecorded gestures
(wave left, wave right, clenched fist, spread hand) are shown
on Figure 5 and Figure 6.

5) Classification:

Fig. 7. LDA’s and Logistic regression’s error in relation to the filtering
window size

Fig. 8. LDA’s and Logistic regression’s error in relation to the training size

Fig. 9. Window size vs Training data points for LDA classification



Fig. 10. Window size vs Training data points for Logistic Regression
classification

III. GAMING FRAMEWORK

IV. RESULTS

V. DISCUSSION AND CONCLUSION
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