
(Tentative title) MYO Armband for gaming
applications

Yegor Chsherbatykh
School of Science and Technology

Nazarbayev University
Astana, Kazakhstan

yegor.chsherbatykh@nu.edu.kz

Dinmukhammed Baimurza
School of Science and Technology

Nazarbayev University
Astana, Kazakhstan

dinmukhammed.baimurza@nu.edu.kz

Abstract—
Index Terms—MYO, EMG, LDA, Logistic regression, machine

learning, gaming

I. INTRODUCTION

Electromyography (EMG) is a bio-medical signal that is
produced by the muscular electrical activity in response to
stimuli [1]. A muscle is a set of motor units each composed out
of muscular cells innervated by a motor neuron. Muscles are
connected to tendons which serve to move skeleton structures.
A resting potential between the intracellular and extracellular
environments of the muscle is about -80mV. Motor neu-
ron initiates muscle contraction by releasing specific neuro-
transmitters from the corresponding nerve endings. Increased
neurotransmitter concentration is picked up by the muscle
cell receptors which in turn initiate a process of membrane
depolarization. A wave of polarization and depolarization is
propagated across the neighboring muscle fibers causing them
to contract [1] [2].

The summation of the action potentials from all fibers in a
particular motor unit generates a motor unit action potential
(MUAP). Thus, the EMG signal can be observed as a result
of the summation of multiple MUAPs [3]. Generally, there are
two types of sensors used for EMG signal acquisition: invasive
and non-invasive. Invasive sensors are inserted directly into the
muscle tissue while non-invasive are placed on the skin above
the region of interest [1]. For the purpose of this study non-
invasive sensor from the MYO Armband will be used.

MYO armband is a human-computer interface developed
by Thalmic labs in 2014. The armband is placed at the upper
part of the forearm where it acquires EMG activity through 8
sensory modules. The device communicates with the computer
by using Bluetooth. MYO armband supports five hand gestures
from the box: wave in, wave out, fist and spread fingers. Those
gestures can be then mapped to predefined user commands
or application. Additionally, real-time raw EMG data can be
acquired via the MYO Armband SDK.

In this paper, we will propose a gesture-based framework
which would allow real-time usage of the MYO Armband
in different gaming scenarios. In the further section, we
will provide performance measurements of the framework in

Fig. 1. MYO Armband and labeled channels

Fig. 2. Raw EMG signal sample

relation to the classification model, train-test split ratio and
filtering window size.



Fig. 3. Rectified EMG signal sample

Fig. 4. Filtered EMG signal sample

II. MATERIALS AND METHODS

A. Materials

In this study we used non-invasive commercial EMG sensor
Myo Armband. Small size, portability and relatively low cost,
and a proprietary SDK make MYO Armband a great device
for quick EMG data acquisition. MYO Armband has 8 dry
sensors (Figure 1). Those 8 sensor transfer EMG data through
Bluetooth at a rate of 200Hz. The armband should be placed
at the upper part of the forearm. Before every experimental
trial, MYO had been worn for a period ranging from 5 to 10
minutes for device warm-up and more accurate sensory output.
Once the device is connected to the PC, the raw EMG data
was acquired by using the official Thalmic Lab SDK.

B. Methods

1) Data acquisition: The raw EMG data from the MYO
Armband is collected through the window WN×8 where
N ⊆ Z+ and represents number of EMG samples. The
window size is adjustable based on the gaming application
used. If the window size is 200 samples (|W | = 200). Each
column of the W is represented by the channel vector C200×1

i

received from the channel i = 1, 2, 3, ...8.
2) Rectification: Preprocessing is a crucial part of EMG

signal classification. Raw EMG signal (Figure 2) should

be preprocess to eliminate random high-frequency and low-
frequency noise [1]. This is usually done by averaging the
signal Sn ⊆ RN×8 and performing full-wave rectification. The
result of the signal rectification is a signal abs(Sn) (Figure 3)
where each data point is an absolute value of itself. Full-wave
rectification preserves the original EMG dynamic and helps to
avoid the situation when the EMG signal can be averaged to
zero.

3) Filtering: For real-time EMG filtering the moving aver-
age algorithm is used. Each channel Cn ⊆ RN×1 of the signal
Sn is filtered by unweighted mean of the previous n data
points pi.

Cn =
pM + pM−1 + pM−2 + ...+ pM−(n−1)

n

Cn =
1

n

n−1∑
i=0

pM−i

For offline performance estimation of the classifier models
the moving average approach is inadequate since it makes data
points dependent of each other. Therefore, to avoid the possible
dependency between the train and test sets each channel Cn of
the signal Sn is averaged by the number of points Np ⊆ Z+

(Figure 4).
4) PCA: Principle Component Analysis (PCA) is a very

powerful yet simple dimensionality reduction technique. The
main idea behind PCA is to project data from a high-dimension
space onto low-dimension space with maximum variance. The
approach is particularly useful for preliminary analysis of the
complex multichannel EMG datasets. The result of the PCA
is a set of orthogonal principal components among each the
variance of the features is maximized and noise is reduced [4].

The PCA uses the notion of variance and covariance exten-
sively. The variance is measure of the data is spread from the
mean in a dataset:

Var(X) =
∑n

i=0 (Xi −X)
2

n− 1

Covariance is a measure of how the data dimension vary
from the mean with respect to each other. For matrices X and
Y the covariance is calculated as follows:

Cov(X, Y) =
∑n

i=0 (Xi −X)(Yi − Y )

n− 1

Although the covariance must be calculated only between
two dimensions, it is still possible to get the covariance esti-
mates from a multidimensional dataset. Thus, for the feature
matrix XN×8 = (X1, X2, ..., X8) ⊆ RN×8 all possible inter-
dimensional covariances are calculated and put into covariance
matrix C8×8.

C8×8 = (ci,j = Cov(Dimi, Dimj))

Before calculating the covariance matrix for the dataset, it
is important to subtract mean value x from x to obtain a zero
mean in all dimensions.

Next step is find eigenvalues and eigenvectors of the covari-
ance matrix Cov. The biggest eigenvalue with a corresponding



Fig. 5. Four gesture dataset projected on two principle components

Fig. 6. Four gesture dataset projected on three principle components

eigenvector will be a principle component of the dataset. It is
up to us to decide how many principle components to choose
from a ComponentVector.

ComponentVector = [eig1, eig2, eig3, ...]

The final step is to project the dataset along the chosen
principal components. This is done via simple matrix multipli-
cation where both the principle components matrix Pc ⊆ R8×8

and feature matrix X ⊆ RN×8 are both transposed.

ProjectedData = PT
c XT

The PCA results on the dataset with 4 prerecorded gestures
(wave left, wave right, clenched fist, spread hand) are shown
on Figure 5 and Figure 6.

5) Classification: As it has been said before, MYO Arm-
band has 5 default pre-calibrated gestures that it is able to
recognize. However, in our research, we trained classification
models on custom gestures from raw data in order to accom-
plish two tasks. First is to estimate the accuracy of MYO
armband and our model and second is to have a specifically

chosen gestures for a particular game. This approach made a
gaming experience better.

We compared two classification algorithms that fits best to
our needs. They are Linear Discriminant Analysis and Logis-
tic Regression classification algorithms. Linear Discriminant
Analysis or LDA is a machine learning algorithm that is used
for a dimensionality reduction or classification. This algorithm
is a generalization of Ronald Fisher’s linear discriminant
method. LDA is close to the PCA in a sense that it tries to show
linear combination of variables that explains the given data
best, but it focuses on maximizing the separability between
the classes. LDA makes it by creating a new axes that are
maximizing the mean class difference and minimizing the
variance in each class. Such approach gives a good separation
between the classes and makes this algorithm to be used as a
classifier. Classes in our experiments are individual gestures.

For multiclass classification, LDA measures mean not be-
tween the center of two classes, but between the center of N
classes and center of each class.

For both classification algorithms we used 1000 × 8 data
points for estimating their performance. We had three ex-
periments on estimating the optimal window size, minimum
number of training data and window size vs training data for
both algorithms. On average, Logistic Regression has shown
better results in all three cases, therefore we chose it to use in
our gaming framework.

[7].

C. Gaming framework

MYO Armband mobility and ease of use make it a great
device for designing new human-computer interfaces and ap-
plications. Real-time gesture classifier models produce discrete
numerical output that can be used in different computer
interactions. For the purpose of this study, a MYO mediated
gaming framework was created.

The process of recording EMG gesture data and creating
a classification model was automated with a console-based
Python application [5]. The model was used in real-time EMG
processing application written also in Python [6]. Application
was supplied with a classification model in .sav format and
a JSON configuration with gesture keyboard mappings. Raw
EMG data in a form of vectors V ⊆ R1×8 was received at a
rate of 200Hz and stored in a queue data structure of size
N ⊆ Z+, forming a feature matrix X ⊆ RN×8. X was
then fed into the classifier which produced classes vector
Y ⊆ Z1×N where Yi corresponded to a predicted class for
a feature vector Vi. Mode of the vector Y is then mapped to
the keyboard input using PyAutoGUI library. Sample mapping
configurations are presented below and examples of gaming
applications are presented on Figure 11.

Class label Gesture name Key

1 Wave-in left
2 Wave-out right
3 Clenched fist enter
4 Spread fingers space



Fig. 7. LDA’s and Logistic regression’s error in relation to the filtering
window size

Fig. 8. LDA’s and Logistic regression’s error in relation to the training size

III. RESULTS

After all classification model evaluations, Logistic regres-
sion algorithm appeared to be more effective than LDA both
on varying window size and quantity of training data.

In addition to that, we estimated what would be the best
combination of parameters of window size vs training data
and on this time Logistic Regression again has shown better
results. From Fig. 9 and 10 we can see that optimal solution
for both algorithms would be a usage of window size not less
than 10 points and as much training data as possible.

IV. DISCUSSION AND CONCLUSION

Our experiment has shown that optimal algorithm for
discreet gesture recognition for MYO Armband is Logistic
Regression. For the future work, we can expand our experi-
ment in order to estimate the maximum possible gestures that
MYO is able to recognize as well as understand what are the
”optimal” gestures that give highest accuracy values on testing.
Moreover, we can estimate what is the highest frequency on

Fig. 9. Window size vs Training data points for LDA classification

Fig. 10. Window size vs Training data points for Logistic Regression
classification

Fig. 11. Examples of gaming scenarios: HexGL on the left and Arkanoid on
the right.



which MYO is able to recognize gestures. In addition to that,
we can also modify our experiment in order to estimate the
performance of MYO on recognition of continuous data, it’s
response time and it’s accuracy as well.
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