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Fig. 1. Control Axes. [17]

I. INTRODUCTION

What makes a plane fly? Everything close to the earth is
affected by gravitational force. In order to overcome this force
and be able to fly planes generate lift force from wings using
thrust force from engines. Combining this with aerodynamic
drag force, we get four forces that affect the position of the
plane in the air: Weight, Lift, Drag, and Thrust. On top of
that, planes are able to make maneuvers by rotating in three
dimensions, yaw, pitch, and roll (see Fig. 1). These rotations
are possible because of the controllable rudder (yaw), elevators
(pitch), and ailerons (roll).

The project is done for learning purposes. There is no
other motivation other than to acquaint ourselves with airplane
physics simulation, basics of 3D graphics, hardware accel-
erated terrain rendering, and the art of writing video game
shaders. This report consists mostly of background information
since our work boils down to choosing and implementing
existing solutions with no innovation from our side.

In order to get a basic understanding of flight simulation,
we inspected existing simulators: professor Hans’ simulator,
FlightGear [4], and X-Plane [7]. All of them use data measured
in wind tunnels to calculate the aerodynamic forces. They also
divide the plane into several sections and each of this sections
exerts forces and torques individually. Our implementation
brings nothing different. The aircraft we simulate is Boeing-
737-400.

This report is divided into three parts. Part one explains the
physics model, part two explains the graphics, and part three
consists of problems we encountered.

Fig. 2. The pink arrows represent aerodynamic forces

II. PHYSICS MODEL

Our Plane object consists of fuselage, main wings, elevators,
rudder, engine, one front wheel, and two main wheels. It
also contains information about plane’s mass, inertia, position,
velocity, angles, angular velocities, and junction points of
wings and elevators. We can change the throttle of the engine,
the control surfaces’ deflection, and we can toggle brakes on
and off. These fields and methods are considered enough to
reasonably simulate a three-dimensional flight.

The simulation takes place in plane’s update function which
calculates the four forces, final torque and updates the state
of the plane (position and orientation). These fields are then
displayed as a model of the plane with pink arrows which
represent the aerodynamic forces exerted on the plane (see
Fig. 2). The yellow arrows are normals of the corresponding
airfoil segments.

A. Forces

The forces are stored as three-dimensional vectors. The
weight force is simulated simply as a constant force directed
downwards and thus its vector representation is (0, -weight,
0), where weight is a multiplication of plane’s mass and grav-
itational constant. The thrust force is obtained from Engine
object which has predefined maximum thrust force and throttle
level. The throttle level can be considered as the percentage
of maximum thrust force that engine finally exerts.



The two remaining aerodynamic forces are not so easily
calculated. The main wings and elevators are split into 10 and
5 sections respectively, so that each section produces its own
lift and drag. This is important because the tip of an airfoil has
different angle of attack compared to its root during rolling,
which results in different lift forces in each section. The lift
and drag from airfoils (including fuselage) are calculated using
these equations:

p = 0.5 ∗ ρ ∗ v2

Flift = p ∗A ∗ Cl ∗ Cg

Fdrag = p ∗A ∗ Cd

where p is dynamic pressure, ρ is air density, v is the velocity
of an airfoil segment, A is the area of an airfoil segment, Cg

is the ground effect variable, and Cl and Cd are coefficients
of lift and drag respectively. These coefficients depend of
an angle of attack of an airfoil segment and are stored as
tables for every airfoil segment. These tables were originally
obtained from experiments in wind tunnels and are available
via various books, particularly [1]. The ground effect variable
ranges within [1, 1.15], reaching its max when the distance
of airfoil from the earth is equal to zero, and reaches to its
minimum after this distance passes 15 meters.

Our simulator also allows the plane to take off the ground
and drive and land on it. For this, our Plane object has three
Wheels objects, one front wheels object and two main wheels
objects. The contact of wheels with the ground is determined
by the plane’s position, plane’s orientation, junction point of
wheels, and terrain height. We modeled wheels as springs.

The figure 3 shows a wheel and ground. When the wheel
is not in contact with ground no resulting force is applied.
When it is in contact, three forces are produced. For simplicity
we assume that the force is always distributed equally among
them. Plane is often pitched up such that its forward wheel is
lifted, so it is not a very good assumption. The normal force
always points up (even when plane is located on a slope)
and has magnitude of y component of F(net force without
wheels). When plane falls on ground normal force removes y
component of acceleration, but doesn’t remove y component
of velocity so the plane ”sinks” underground. To remove y
component of velocity a spring force is calculated. Spring
force’s direction is obtained from plane’s orientation and its
magnitude is calculated by Hooke’s law. Spring force by itself
leads to oscillation of the plane once it lands. To counteract
that, a damping force (not shown on the figure) is applied.
Damping force is inversely proportional to the velocity of
wheel. Finally, rolling friction force is calculated. It points
in opposite direction of velocity. Its magnitude is |N | ∗ fc.
Where N and fc are normal force and a friction coefficient.
The friction coefficient is different depending on the direction
the wheel is moving in (figure 4). When planes hits the ground
so fast that the wheels sink into the fuselage we consider that
the plane has crashed.

After all individual forces are calculated we sum them into
net force and compute the acceleration. Velocity is obtained by

Our simulation data Real data
Take-off speed (m/s) 68 69
Take-off distance (m) 2100 2290

TABLE I
COMPARISON OF TAKE-OFF DATA BETWEEN OUR SIMULATION AND REAL

WORLD

multiplying the acceleration by delta time, position is obtained
similarly from velocity.

B. Torques

While forces decide the linear acceleration of the plane,
torques affect its angular velocity. Airfoils are the source of
the torque in the air. If the plane is on the ground, wheels
also produce torque. A torque is calculated by computing
the cross product of a force and the distance to the plane’s
center of mass. The angular acceleration is calculated using
the following formula [18]:

aa = I−1 · (T − av × (I · av))

Where aa, av, I , T are angular acceleration, angular velocity,
inertia matrix, and torque respectively. Angular velocity and
orientation are obtained in a similar way as the plane’s velocity
and position.

C. Simulation validation and controls

Our simulation allows controlling the plane by altering
the flight control surfaces deflection level, throttle level, and
braking. Control surfaces’ deflection level changes their angle
of attack which affects the amount of torque produced by
them, thus controlling it allows controlling the orientation of
the plane.

In order to make sure that our simulation is realistic, we
compare certain aspects of the behaviour of our plane with the
real plane’s behaviour. In particular, we compared the take-off
speed, take-off distance, behaviour of the plane in air with and
without interference from our side, ability to land and stalling.
The comparison of our take-off data and real data is shown in
Table 1.

It can be seen that our simulated plane produces just
the right amount of lift, drag and wheels friction forces.
They allow to take-off only after gaining realistic speed and
completing distance of a realistic runway. It was possible to
perform basic maneuvers using controllable surfaces. We were
able to land in the simulation, and descending at too high speed
crashes the wheels, just like in real world. Flying straight up
leads to stall and temporary loss of control, however plane
eventually stabilizes itself facing downwards if the height is
sufficient. This shows that the model of the plane, i.e. how
airfoils are located with respect to each other is done correctly,
as well as their lift and drag calculations. Flying without pilot’s
interference makes plane to enter a phugoid motion, thus the
midair lift and torque are implemented correctly.



Fig. 3. Wheels modeled as springs

Fig. 4. Wheels’ rolling friction coefficients

III. GRAPHICS

The graphics were done using SFML [8], OpenGL [12],
and GLM [5] libraries. SFML is used to open a window
and poll input events. OpenGL provides access to hardware
acceleration and graphics pipeline. Graphics pipeline takes
data(vertices, faces, texture coordinates) passed from CPU,
shaders, and runs the shaders on data. It automatically discards
vertices that are out of the field of view in a process called

Fig. 5. The complete flight of our plane from takeoff to landing.

clipping. GLM provides implementations of common linear
algebra constructs and operations as well as utility functions
for using them with OpenGL.

GLSL shaders don’t have functionality to import/include
code from other shaders. Because of that code for calculating
lighting was duplicated among shaders for models/terrain. One
possible solution is to implement some kind of preprocessor
for GLSL. The other solution is deferred rendering. The
idea is to do rendering in multiple stages. In the first stage
models/terrain/other do some work specific to them and output
data needed to compute lighting into textures (figure 6). In the



second stage, a lighting shaders takes those texture and outputs
the final image to the screen.

The lighting shader uses a simple Phong lighting model [3]
popular in older video games. It splits the effect of light into 3
parts: ambient lighting, diffuse lighting, and specular lighting.
Ambient lighting approximates indirect light (when the light
rays don’t come from the light source directly but are reflected
by surrounding objects) by making models slightly lit up by
default. Diffuse lighting simulates direct light by making a part
of the surface of the object slightly darker or lighter depending
on the amount of light that falls on it (a light ray is most
intense when it hits at 90◦ and least intense when it hits at
0◦ / 180◦). Specular lighting approximates the reflection of
direct light. Besides the angle of light rays and the angle of
the camera specular lighting also depends on shininess of the
surface. Shininess is just a scalar.

After the ambient, diffuse, and specular lighting are cal-
culated they are summed and multiplied by the color of the
surface. Finally, the color is blended with the atmosphere color
based on distance from the camera and with cloud color if the
object is occluded by a cloud.

A. Atmospheric scattering

We adapted open source implementation of atmospheric
scattering from [19]. In flightsim the Earth is flat. But when we
render the sky we assume that we are surrounded by a sphere
that designates the ”edge” of the atmosphere. For every pixel
we ”shoot” a ray from the camera to sky. Then we ”march”
along that ray with a small step size and compute how much
light reaches the camera from every point on the ray. We do
this for 3 coefficients and 2 phase functions that depend on
wavelength (red, green, blue) and type of air particles (air
molecules or larger particles like dust). Finally, we sum them
together to obtain the final color.

The amount of light that reaches the camera from a point
in the sky is a product of 2 quantities.

1) The amount of light at the point. It is the amount of
light that reaches the point from the sun. To compute it
we need to shoot another ray from this point to the sun.
This quantity is given by

T (X,Pa) = exp(−β
Pa∑
X

exp(−h/H)ds)

Here, X is the point in the sky. Pa is the position where
the ray from the point to sky intersects with the edge
of the atmosphere. β is a coefficient that depends on
wavelength and air particle type. h/H is a scaled height
(0 at ground, 1 at the edge of the atmosphere). ds is a
small distance along the ray from the point to the sun.

2) The ratio of light at the point that reaches the camera.
It is given by

T (Pc, X) = exp(−β
X∑
Pc

exp(−h/H)ds)

Here, Pc is the position of the camera. ds is a small
distance along the ray from the camera to the point.

The final equation to compute the color of the sky at a given
pixel is

skycolor(Pc, Pa) = sunintensity·P (V,L)
Pa∑
Pc

T (Pc, X)T (X,Pa)ds

Here, Pa the position where the ray from the camera to sky
intersects with the edge of the atmosphere. ds is a small
distance along the ray from the camera to the sky. V is
the direction of the ray from camera. L is the direction of
sunlight. The phase function P (V,L) specifies how much
light gets scattered depending on the angle between V and
L. sunintensity is just a constant.

Here are phase functions for air molecules and larger air
particles.

PR(V,L) =
3

16π
(1 + (V · L)2)

PM (V,L) =
3

8π

(1− 0.762)(1 + (V · L)2)
(2 + 0.762)(1 + 0.762 − 2 · 0.76 · V · L) 3

2

B. Clouds

The rendering of clouds consists of 2 stages.

• Rendering their models as if they were opaque models
and computing information needed for the second stage.

• Blending them into the final image.

To render the clouds we generated 2 identical meshes shaped
like discs. They consist of 100 concentric rings each with 100
segments and cover a wide area of sky around the plane. The
vertices of the first mesh are offsetted according to heightmap
of the top of the cloudscape. The vertices of the seconds mesh
are offsetted according to heightmap of the bottom of the
cloudscape. These 2 meshes are then rendered twice. The first
time they are rendered with ordinary depth order (fragments
that are closer are drawn on top of fragments that are farther).
The second time they are rendered with the opposite rendering
order. This gives us the farthest position of a cloud and the
closest position of a cloud for any given pixel(figure 8) when
the camera is outside of the clouds. When camera is inside the
clouds the renders with different depth orders would coincide.
We handle this case by simply detecting when the camera is
inside a cloud and setting the nearest position to the camera’s
position. To blend the the clouds into the final image we
compute how transparent they should look. It is done by
subtracting the farthest position of a cloud from the closest
and plugging them into Lambert-Beer law.

finalcolor = lerp(finalcolor, exp(−σ(farpos−nearpos))

Here is σ an extinction constant that determines how dense
the clouds are.



Fig. 6. Textures computed in the first stage of deferred rendering

Fig. 7. Phong lighting model (ambient, diffuse, specular, sum with color).
Note: this not the airplane we are modeling. It’s for testing graphics.

Fig. 8. Rendering a cloud

C. Wavefront file formats

We chose Wavefront OBJ [15] and Wavefront MTL [16]
file formats for storing models. They are simple text files
and were designed to be easy to parse. We wrote simple
parsers for them. The parsers ignore information needed for
the features we haven’t implemented. Obj files store geometry
(vertices, faces) and texture coordinates. They also specify
which material to use for each face. Mtl files store the
materials. Materials specify texture file paths, default colors to
use in the absence of textures, shininess for specular lighting,
and which interpretation of the Phong lighting model to use.
For now, we only have a single version of Phong and it doesn’t
completely correspond to any of the models of Wavefront
MTL. But all of the Wavefront MTL lighting models provide
all the information needed for our model so we just load what
we need and ignore the rest.

D. AC3D file format

In addition to wavefront OBJ file format flightsim supports
AC3D models. There reason for choosing this format is that
AC3D is used in FlightGear; Therefore, open source plane
models can be loaded into flight simulator. Another advantage
of this format is that it is simple text file as OBJ. While writing
a parser the design of the model class was changed. Currently
our models consist of separate arrays for materials, textures
and objects. Object is a structure that contains information
about mesh like vertices, material indexes, texture indexes.
Objects have a hierarchy that allows to correctly apply trans-
formations. For example, we can rotate root object and all
child objects will be affected. In order to decrease the amount
of memory taken by models on a gpu, only unique vertices
are kept in memory and drawing is performed using list of
their indexes kept on element buffer.

E. 3D grid

For testing purposes while implementing physics of flight
in 3D, terrain was replaced by a flat surface with a grid. The
main reason for implementing it was that plane flight could



have been tested without the fully implemented terrain. At
that time we didn’t have collision with terrain and the terrain
wasn’t big enough. The grid is of a fixed size and always
in the same position relative to the plane. By using shader
described in (http://madebyevan.com/shaders/grid/) illusion of
the movement is created.

F. Arrows

For debugging the physics of the flight, the way of represen-
tation of vector quantities like velocity and force was required.
It was done by simple arrows. The application holds only one
instance of arrow in memory which is transformed to different
positions and orientations.

G. Terrain

The geometry of terrain is stored in a grayscale image
called heightmap. Each pixel in a heightmap represents height
data for 32m2, so a map with a resolution of 2048x2048
corresponds to terrain with area 655362m2. Our program uses
this heightmap data to generate polygons. In order to reduce
the complexity of rendering we use tessellation shaders to
achieve different levels of detail based on the distance to the
camera.

Tessellation shaders are part of rendering pipeline intro-
duced in OpenGL from version 4.0 [13]. These shaders accept
a sequence of vertices called patches that represent some
primitive geometry(squares in our case) and then subdivide
them into more primitives. The pipeline consists of three parts.
Tessellation Control Shader (TCS) that specifies the way patch
will be divided by choosing tessellation level for edges of
a patch. Tessellation Primitive Generator generates primitives
and is not programmable by a user. Tessellation Evaluation
Shader (TES) processes all vertices produced by generator -
applies MVP(Model view projection matrix) and sets correct
height taken from heightmap texture.

Regions of terrain closer to the camera are divided into
smaller patches. Initially, we increased tessellation levels for
closer (and smaller patches), but we found that level of detail
is sufficient if all patches have roughly the same level of
tessellation.

Rendering of terrain starts by dividing it into non-uniform
squares. This is achieved by representing it as a quadtree
structure. We start from the root which is a whole terrain
and then split it into four child nodes. Each child node is
recursively split until nodes get small enough relative to the
camera position. This is done by comparing the distance to
the camera with diagonal of a node. This process is repeated
every frame.

Then for each leaf node of the quadtree the renderer calls a
draw operation and sends a square patch. Vertex shader simply
passes them to TCS. TCS sets the tessellation levels for each
edge of a patch. TCS passes a square patch and tessellation
levels of each edge to TPG. TPG tessellates the patch into
polygons and passes them to TES.

Next, TES shader receives a set of polygons that form
a square. In this stage, shader accesses heightmap texture

Fig. 9. Quadtree representation of the terrain. [14]

and based on its intensity it calculates height for vertices of
polygons. Then it applies MVP matrix to transform vertices
to the screen coordinates. In addition to the vertices in screen
coordinates, TES outputs 2 vectors: texture coordinates (also
referred to as UV coordinates) and the same vertices in world
coordinate space.

Now that the geometry of terrain was calculated and pro-
jected to screen coordinates it has to be rasterized. The terrain
is textured differently than models. A model can be wrapped
completely with few textures. The terrain is too large so
instead, it is tiled by 4 repeating small textures [10]. Multiple
textures can be blended together. In order to prevent visible
tiling on terrain caused by texture repetitions, a technique
described in [9] is used. An image called alphamap determines
the ”presence” of each texture on each spot of the terrain.
Red, green, blue, and alpha channels correspond to 4 textures.
Texture coordinates from TES are used to sample 4 colors
from 4 textures. World coordinates from TES are used to
sample alphamap to get 4 coefficients for interpolating colors.

−→c1 = sample(texture1, tx, ty)

−→c2 = sample(texture2, tx, ty)

−→c3 = sample(texture3, tx, ty)

−→c4 = sample(texture4, tx, ty)

r, g, b, a = sample(alphamap,wx, wy)

−−−→
color = r · −→c1 + g · −→c2 + b · −→c3 + a · −→c4

In the current version of the program, we use a heightmap,
alphamap, and textures that are generated using L3DT [2].

IV. PROBLEMS

A. Clouds

There are 2 problems with clouds.
• When multiple clouds are lined up on your line of sight

their transparency is wrong.
• Clouds look wrong when the sun is down.
The first problem is because we just subtract the nearest

cloud point from the farthest cloud point to compute the



Fig. 10. Alpha map (with alpha layer removed to visualize) and heightmap.

Fig. 11. Clouds

”thickness” of the cloud. It doesn’t take into account that there
might be gaps of air between these points (when the nearest
and farthest points belong to different blobs of clouds).

The second problem is that if we render our clouds as
described in the explanation of clouds the parts in the shadow
would look completely dark. The reason is that we are not
simulating the ”in-scattering” effect. It is when a light ray
enters the cloud and bounces around inside the cloud making
it glow. It is very hard to simulate efficiently, so instead we
just faked the glow by making the cloud brighter. Because of
that, the clouds look bright even when the sun is down.

B. Normals of AC3D models

One of the problem encountered during loading plane
models in ac3d format was the fact that they don’t contain
precalculated normal vectors. Calculations had to be done
during loading and the problem was caused when one vertex
was shared by multiple faces. Averaging normals of all adja-
cent faces caused artifacts where after light calculations vertex
became dark. Partially the problem was resolved by taking
into account the area of each face during normal computation
(figure 12).

C. Interface

The use of sfml functions simultaneously with the openGL
context of the application caused problems. The main one
was the hardware support of correct version of opengl on the
computers of our team members. SFML relies on openGL

Fig. 12. The averaged normals of an AC3D model.

calls that are deprecated and hardware of one team member
didn’t support it. Moreover, before calling its functions state of
opengl had to be saved in stack and then switched back after
interface was drawn. It frequently was the cause of graphical
artifacts after major changes in the rendering system.

D. Shadows

We didn’t implement shadows. To generate shadows we
need to render the scene twice. Once from the point of view
of the camera and once from point of view of the sun to
find which objects get hit by light rays. For the second part
we only need to render the depth information. But doing so
would require us to write a second set of shaders which we
didn’t have time for. Reusing existing shaders would be too
computationally expensive because normals, colors, etc. would
be computed twice.

E. Debugging in OpenGL

Code that runs on CPU can be debugged with a debugger or
print statements. Shaders can’t even contain print statements.
The only way to debug them is to display the needed info
visually, e.g map numbers to colors.

F. Cracks in terrain

Our terrain consists of nonuniform patches and in the edges,
where patches of different sizes meet, visual artifacts occur.
One solution suggested in a paper from Nvidia [6] is to
reduce tessellation level by two times in the smaller patch’s
edge that is adjacent to the larger patch. However, in our
implementation, there were still some visible cracks in the
terrain that might have been caused by incorrect tessellation
level calculation. We improved the quadtree neighbor finding
algorithm, but that didn’t solve the problem completely.
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